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Abstract. The width of a self-avoiding polygon on the square lattice is defined as the minimal
(horizontal or vertical) distance between two of its parallel edges. If the polygons are convex, this
distance is internal. The perimeter generating functions for such convex polygons, whose widths
exceed a threshold, can be given explicitly. From these expressions, a two-variable (width and
perimeter) generating function can be constructed. The corresponding phase diagram shows two
types of critical behaviour, which meet at a tricritical point.

1. Introduction

Self-avoiding polygons (SAPs) on lattices still pose many unsolved enumeration problems
which are related to spin models, see [1] for a discussion which includes the history of this
type of problem. These and related enumeration problems are also important for the derivation
of high-temperature series, see, e.g., [2] for the basic ideas and [3] for a more recent application
to a class of complicated spin models. Some progress has been made in the last few decades.
This progress consists mainly of exact results for generating functions of special classes of
SAPs on the square lattice. In particular, the perimeter generating function for convex SAPs,
which are such that their perimeter equals the one,Pb, of the smallest rectangle in which they
fit, has been derived by various methods by different authors [4–7]. Several moments of the
combined perimeter and area generating function have also been calculated for this case [8,9],
leading finally to an expression for this function [10]. The perimeter generating function for
SAPs, whose perimeter isPb+2, has also been found [11,12]. For SAPs with perimetersPb+2c,
variously called SAPs with concavity [13] or defect index [12]c, no further results have, as
yet, been obtained forc > 1, although there are also some results for a closely connected
class of lattice graphs [14]. Further classes of SAPs are the row-convex and staircase ones.
For the first of these, only the width (or height) is equal to the corresponding value for the
bounding rectangle. For these, the perimeter generating function is known [15] and results for
the combined perimeter and area generating function have been found as well [16, 17]. The
generating functions are also known [4, 17] for the staircase SAPs. These results extend the
very early work of Temperley [18] and Pólya [19] for this type of SAP.

Other exact results concern the critical pointx−2
c = 2 +

√
2 and exponentα = 1

2 for the
hexagonal lattice, although these are not rigorous [20,21]. These quantities are defined by the
(assumed) singular behaviour of a perimeter generating functionP(x) for x → xc:

P(x) =
∞∑
n=0

p(n)xn ∼ (xc − x)α−2 (1.1)
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Figure 1. The definition of width of a SAP. Dashed lines indicate where the minimum is achieved.

wherep(n) is the number of SAPs of a specific type with perimetern, andxc is the smallest
value ofx for which this function is singular. The exponent is thought to be universal, as is
confirmed by the analysis of exact enumerations [22–25] for the square lattice. The algorithms
for these have reached such a degree of sophistication that all SAPs with perimeter up to 90
have been enumerated, see the tables in [22,25].

There is an analogy between spin models and SAP problems in the following sense: the
perimeter generating function can be loosely identified with the field-free free energy function
of a spin model, the critical point(s) of the latter being analogous to the pointxc at which
the generating function first becomes singular. Similarly, the combined perimeter and area
generating function is analogous to a spin model in an external field, yielding a richer phase
diagram. This analogy serves to explain the greatly increased difficulty of obtaining exact
results for such two-variable functions. In this paper, a different two-variable generating
function is considered, based on perimeter andwidth. This latter quantity, denoted byt , is
defined as the minimum of all horizontal and vertical distances between two parallel edges
of the SAP. In figure 1, three examples fort = 1, 2 and 3 are shown as examples (a)–(c),
respectively. A formal definition of width is as follows.

(i) Let V be the set of vertical edges of the SAP; a distance functiondv(e1, e2) for all pairs
from this set can be defined by: if there is a horizontal path of lengthl > 1 through
the lattice, which contains an end vertex from both edges, thendv(e1, e2) = l, else set
dv(e1, e2) = +∞. This latter condition applies if the edges are too far apart in the vertical
direction, but also ife1 ande2 have a vertex in common.

(ii) Similarly, if H is the set of all horizontal edges, definedh(f1, f2) = k if there is a vertical
path of lengthk > 1 containing an end vertex off1 and off2, else setdh(f1, f2) = +∞.

(iii) Now the width t can be defined by

t = min[ min
e1,e2∈V

dv(e1, e2), min
f1,f2∈H

dh(f1, f2)]. (1.2)

The notion of width is not completely independent of the area, since it is clear that for a SAP
with a fixed perimeter one has that:

(i) The SAP has maximal area if and only if it has maximal width.
(ii) If the SAP has minimal area it has minimal width.

Therefore, it may be expected that a combined width and perimeter generating function also
shows a rich phase diagram akin to that for a spin model in an external field. On the other hand,
the exact evaluation of this two-variable function may be simpler than the perimeter and area
one. This provides the motivation to try such an evaluation in a simple case. In the remainder
of this paper, it is shown that such an exact result can be obtained rather easily for the case of
convex SAPs (CSAPs), so that an extension to concavity-1 SAPs does not look impossible.

For a perimeter and area generating function, denoted byA(x, y), the fugacitiesx andy
can be given a physical interpretation:x is related to the surface tension (or, to be precise for
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the two-dimensional case, the line tension), whereasy is related to the internal pressure. In the
case of a perimeter and width generating function, the second fugacity can be interpreted as
measuring the strength of a local, short-range interaction between parallel edges of the SAP.
This is not quite as satisfactory as in the perimeter and area case, but it should have analogous
properties: if this interaction is strongly repulsive, its effect is analogous to a high internal
pressure and the average SAP has large area, whereas if it is attractive, then a large perimeter
is more probable as in the case of low internal pressure.

This paper is organized in the following way: in section 2, the method of describing CSAPs
introduced in [12] is briefly recalled and used to obtain the perimeter generating functions for a
number of subclasses. These results are used in section 3, where a method based on the repeated
‘dualization’ of the square lattice, which may be of independent interest, is used to obtain the
perimeter generating functionsCt(x) for all CSAPs with width exceedingt explicitly. These
results are then used in section 4 to construct the combined perimeter and width generating
function. The phase diagram corresponding to this function is derived and shown to contain
two distinct phases, which join at a tricritical point. The critical exponents are also found, as
well as the exact forms of all singularities. A short discussion of the results is also given.

2. Some results concerning CSAPs

It is possible to describe a CSAP of the square lattice by a set of numbers, which are related
to the part of the dual lattice contained inside the CSAP [12]. The dual lattice is again square,
as it is obtained from the original one by placing a vertex in each plaquette and connecting
two of these if the corresponding plaquettes have an edge in common. If the CSAP fits into a
bounding rectangle of dimensions(k + 1)× (l + 1), this rectangle encompasses ak × l one of
plaquettes of the dual lattice; the CSAP is now completely defined byk andl and by numbers
a1 > a2 > · · · > al andb1 > b2 > · · · > bl , which have to satisfy

|ai | + |bi | 6 k for i = 1, 2, . . . , l. (2.1)

The absolute value|ai | is the number of plaquettes from the dual lattice missing from thek× l
rectangle on the left-hand side in theith row; similarly, |bi | denotes this missing number on
the right-hand side. A positive value ofai indicates that this has been achieved by ‘pushing
inwards’ the upper-left corner of the rectangle, whereas a negative value is used if the lower-
left corner has been ‘pushed’. Similarly,bi is positive if the upper-right corner has been used,
negative if the lower-right corner has been used. Allai andbi can, therefore, be positive or
negative, as long as their order is maintained and equation (2.1) is satisfied. An example of this
numbering is shown in figure 2(a), which shows a CSAP as thin lines, and the enclosed part of
the dual lattice as thick lines with vertices. Here one hask = 2, l = 3; thea are on the left, the
b on the right. A complementary description for such a CSAP can be obtained after a rotation
of the original one overπ/2 in the clockwise direction; this rotated CSAP is defined byl, k

and variablesa′1 > a′2 > · · · > a′k, b
′
1 > b′2 > · · · > b′k which satisfy an equation similar

to equation (2.1) withk andl interchanged. Descriptions in primed and unprimed variables
are, of course, one-to-one translatable, although this is somewhat involved and not explicitly
needed in what follows. In terms of these variables, the perimeter of a CSAP isP = 2k+2l+4,
whereas its area is

A = (k + 1)(l + 1)−
l∑
i=1

(|ai | + |bi |) = (k + 1)(l + 1)−
k∑
i=1

(|a′i | + |b′i |). (2.2)

The width of a CSAP is simpler to define than for the general case; since all horizontal or
vertical lines which go through the CSAP have exactly one piece inside it (this could actually
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Figure 2. (a) The notation used to describe a CSAP. (b) A CSAP with t = 1 and its connected
double dual in (c). (d) A CSAP with t = 1 and a two-component double dual in (e). (f ) A CSAP
with t = 1 and its three-component double dual in (g). (h) A CSAP with t = 2, its connected
double dual in (i) and the two-component triple dual in (j).

be taken as the definition of such a SAP and explains the name convex), it is just the minimum
of such local, internal widths:

t = min
[

min
16i6l

(k + 1− |ai | − |bi |), min
16i6k

(l + 1− |a′i | − |b′i |)
]
. (2.3)

As shown in [12], the number of CSAPs with a bounding rectangle given byk andl and
which have their first row defined bya = a1, b = b1 is given by

fk(a, b, l) =
(
k + a + b + 2l

2l

)
− 2h(a)

min(a,l)∑
m=1

(
a + l
a −m

)(
k + a + b
l −m

)

−2h(b)
min(b,l)∑
m=1

(
b + l
b −m

)(
k + a + b
l −m

)
(2.4)

where the functionh(x) is defined by

h(x) =
{

1 for x > 0

0 otherwise.
(2.5)

The perimeter generating function follows from the numbersC(n) of CSAPs with perimeter
2n + 4,

C(n) =
n∑
k=0

∑
(a,b)

fk(a, b, n− k) (2.6)

where the brackets(a, b) signify that equation (2.1) has to be satisfied for the paira, b. The
final result is [4–7,12]

C0(x) =
∞∑
n=0

C(n)xn = −4x3 + 11x2 − 6x + 1

(1− 4x)2
− 4x2

(1− 4x)
3
2

. (2.7)

In the following section, two more perimeter generating functions, corresponding to
special subsets of CSAPs, are needed. The first of these,D(x), is the generating function
for CSAPs such that the part of the dual lattice inside its bounding rectangle contains the
vertex in the upper-right corner. This is equivalent to the restrictionb 6 0, so that this is given
by the numbers

Dn =
n∑
k=0

∑
(a,b)
b60

fk(a, b, n− k). (2.8)



Two-variable generating function for convex SAPs 7869

After some algebra, the surprisingly simple result

D(x) =
∞∑
n=0

Dnx
n = (1− 4x)−

1
2 (2.9)

is obtained. Also needed in the next section is the functionE(x), which is the generating
function of CSAPs with upper-left and lower-right corners of their dual insides occupied. This
cannot be obtained directly from equations (2.4), (2.5); instead, one has to ‘glue’ together two
SAPs of the type contributing toD(x), one upside down. The result is again rather simple:

E(x) = [1− 2x − (1− 4x)
1
2 ]/(2x2). (2.10)

Clearly,D(x) is also the generating function for CSAPs with any other corner of their duals
occupied, whereasE(x) is also relevant to the case with the other two diagonally situated
vertices occupied.

3. Results on CSAPs with width exceeding a threshold

For thresholdt = 0, the perimeter generation function is just the one for all CSAPs,
equation (2.7). To find the perimeter generating functionsCt(x) of the CSAPs with threshold
t , the caset = 1 is considered first. By definition, these CSAPs have a width larger than
1. It is easy to see that this means that there is at least one plaquette of the dual lattice left
over in every row and column inside the CSAP. Examples are provided by figures 2(b), (d)
and (f ), which show width-2 CSAPs and by figure 2(h), which is an example of a width-3
one. This means that the duality can be repeated at least once, i.e. the procedure of placing
a vertex in every plaquette and connecting these if the plaquettes have an edge in common
leads to a nonempty graph again. For the examples above, this double dual graph is shown
as figures 2(c), (e), (g) and (i), respectively. In the cases of figures 2(c) and (i), the resulting
graphs are again connected and, as such, also directly define a CSAP; since all can be obtained
in this way, these connected double dual graphs give a contribution

A1(x) = x2C0(x) (3.1)

to the perimeter generating functionC1(x). In the case of figure 2(d), the double dual graph
of figure 2(e) has two components, each representing a CSAP with a fixed corner in its dual.
Such graphs then give a contribution

B(x) = 2x4D(x)2 (3.2)

to C1(x), the factor 2 stemming from the fact that these graphs can extend either from lower
left to upper right, as in figure 2(d), or from upper left to lower right. In the case of figure 2(f ),
the double dual graph has three components. Clearly the contribution of this type of graphs to
C1(x) is

G(x) = 2x6D(x)2E(x) (3.3)

since the ‘middle part’ must have two diagonally opposite occupied corners.
It is now easy to generalize the above: for a CSAP with width larger than 1, the double

dual graph is either connected or it consists ofs + 2 components,s > 0, two of which have
one fixed corner, thes others two diagonally opposed ones. The generating function for these
is then, in terms of the functionsD(x) andE(x),

C1(x) = x2

[
C0(x) + 2x2D(x)2

∞∑
s=0

x2sE(x)s
]
. (3.4)

Here thesth term in the sum corresponds to double dual graphs withs + 2 components.
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It is not difficult to see that, for CSAPs with width larger thant > 1, the corresponding
dual graphs have at leastt plaquettes in every row and column. Moreover, at leastt − 1 of
these overlap in every pair of consecutive rows or columns. Figure 2(h) shows an example for
t = 2. Therefore, the duality construction can be repeatedt + 1 times, see figure 2(j) for the
triple dual graph obtained from figure 2(h). This (t + 1)-dual graph can either be connected,
which gives a contribution

At(x) = x2tC0(x) (3.5)

to the perimeter generating functionCt(x), or it consists again ofs + 2, s > 0 components,
which are of the same types as in the caset = 1. There is a complication, due to the ways
in which these can now be arranged: the overlap requirement allows all distances between
occupied corners to be in the range(2, . . . , t + 1), whereas ifh is a distance from this range,
there areh − 2 extra edges and the requirement that the resulting SAP is a CSAP allows
h− 1 posibilities of arranging these corners. See also figure 2(j), where the distance between
occupied corners is 3 and not 2 as in thet = 1 case. This gives rise to a factorpt(x) for every
pair of consecutive components as

pt(x) =
t+1∑
h=2

(h− 1)xh−2 = txt+1− (t + 1)xt + 1

(1− x)2 . (3.6)

For t = 0, there are no components andp0(x) = 0 can be chosen for completeness. With this,
the total generating function is now

Ct(x) = x2t

[
C0(x) + 2x2pt(x)D(x)

2
∞∑
s=0

(x2pt(x)E(x))
s

]
. (3.7)

The final results of equations (3.4) and (3.7) can be rewritten as

Ct(x) = x2t [C0(x) +Qt(x)] Qt(x) = 2x2pt(x)

(1− 4x)(1− x2pt(x)E(x))
. (3.8)

This is even correct fort = 0, sincep0(x) = 0, see equation (3.6). The leading singularity
of Ct(x) is always atxc = 1

4 and due to the term proportional toC0(x); this implies that the
asymptotic behavour of its expansion coefficientsCt(n) is

Ct(n) ∼ n22n−4t−7[1− 4(πn)−
1
2 + O(n−1)]. (3.9)

Therefore, the number of CSAPs with perimeterP = 2n + 4 and width> t is only a fraction
( 1

16)
t of the total number for largeP .

4. The two-variable generating function

The perimeter generating function for CSAPs of widtht exactly is, from the previous section,
given by

Rt(x) = Ct−1(x)− Ct(x). (4.1)

It is instructive to use the power series expansions of theCt(x) in order to obtain an insight into
the number of CSAPs as functions of perimeter and width. This is done in table 1 forP 6 30,
for which the maximal width is 7. This table shows the asymptotic value of1

16 for the ratios
Ct+1(n)/Ct(n) as noted in equation (3.9) already clearly fort = 1 andt = 2 in the first three
columns of the table. Also it can be seen that the sequences{Cn+2k(t + k)} quickly increase
to reach a fixed value ask increases. This is due to the fact that, forx < 1, the polynomial
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Table 1. The number of CSAPsRt (n) with perimeter 2n + 4= P 6 30 andt 6 7.

t

P 1 2 3 4 5 6 7

4 1
6 2
8 6 1

10 26 2
12 111 8 1
14 492 34 2
16 2 190 145 8 1
18 9 748 628 38 2
20 43 244 2 746 161 8 1
22 190 940 12 000 700 38 2
24 838 742 52 342 3 052 167 8 1
26 3 665 364 227 636 13 292 724 38 2
28 15 938 748 986 546 57 722 3 160 167 8 1
30 68 987 824 4 260 076 249 852 13 764 732 38 2

pt(x) of equation (3.6) approaches 1/(1− x)2 for larget , so that a functionQ∞(x) can also
be defined; it is given explicitly by

Q∞(x) = lim
t→∞Qt(x) = 1− 2x + 2x2 − (1− 4x)

1
2

(1− 4x)(2− 2x + x2)
(4.2)

and its series expansion agrees withQt(x) up to terms of ordert + 1. For positivex < 1,
equation (3.6) implies thatQt(x) < Q∞(x) The constant values referred to above are then the
ones corresponding to the replacement of theQt(x) byQ∞(x) in equation (3.8).

The two-variable generating functionC(x, y) for perimeter and width is

C(x, y) =
∞∑
t=1

Rt(x)y
t = C0(x) + (y − 1)

∞∑
t=0

Ct(x)y
t . (4.3)

With equation (3.8), this becomes

C(x, y) = C0(x)
y(1− x2)

1− x2y
+ (y − 1)

∞∑
t=0

Qt(x)(x
2y)

t
. (4.4)

SinceC0(x) diverges atxc = 1
4, this function is majorated byC∞(x, y), obtained from

equation (4.4) by replacing theQt(x) by its limit for larget for x < xc, y > 1:

C∞(x, y) = C0(x)
y(1− x2)

1− x2y
+Q∞(x)

y − 1

1− x2y
. (4.5)

A rather long calculation shows thatC∞(x, y) − C(x, y) has no singularity aty = x−2,
whereC∞(x, y) is singular, but aty = x−3. Therefore, the singularities of equation (4.4)
nearest to the origin are atxc = 1

4 and atyc = x−2 for x < xc. This phase diagram is shown
as figure 3. The singularities are:

(i) For y > 16, a simple pole (critical exponentµ1 = 1) atx = 1/
√
y.

(ii) For y < 16, there is a double pole with confluent branch point singularity atxc, due
entirely toC0(x), see equation (2.7); the critical exponent isµ2 = 2.

(iii) At the tricitical pointC = ( 1
4, 16), there is a triple pole (exponentµ3 = 3) with confluent

branch point singularity, since the contributions from (i) and (ii) enter as a product.
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Figure 3. The phase diagram of the two-variable generating functionC(x, y).

It has not been possible to obtain a closed form forC(x, y); it is, however, possible to
rearrange the terms so as to show the contributions from the different types of CSAP and to give
some information on the complete singularity structure. To this end, the expanded versions
for Ct(x) of equations (3.4) and (3.7) are inserted into equation (4.3); the result is

C(x, y) = C1(x, y) +
2x2(y − 1)

1− 4x

∞∑
s=0

[x2E(x)]
s
Fs+1(x, x

2y)

C1(x, y) = C0(x)
y2(1− x2)

1− x2y
(4.6)

Fs(x, z) =
∞∑
t=1

pt(x)
szt .

Here the termC1(x, y) derives from connected maximally dualized graphs, whereas thesth
term in the sum derives from maximally dualized graphs withs + 2 components. By writing
the explicit form ofpt(x), equation (3.6), for one of the factors in the last equation above, a
recursion relation for the functionsFs(x, z) can be derived:

Fs(x, z) = [Fs−1(x, z)− Fs−1(x, xz)]/(1− x)2 − xzF ′s−1(x, xz)/(1− x). (4.7)

HereF ′s (x, z) is the partial derivative ofFs(x, z)with respect toz; the startpoint of the recursion
is, from the last of equations (4.6),F0(x, z) = z/(1− z). From this recursion, it follows that
these functions have the form of polynomialsGs(x, z) in x andz, divided by a product of
factors:

Fs(x, z) = Gs(x, z)

[ s+1∏
i=1

(1− xi−1z)i
]−1

. (4.8)

Therefore, if the singularities ofC(x, y) are due to those of theFs-functions (this is, of course,
difficult to ascertain, since there is still an infinite sum in equation (4.6)), they fall into three
classes, which are analogous to the ones found nearest the origin:

(i) For y > 4s+1, s = 1, 2, . . . , there is ans-fold pole atxs+1 = 1/y.
(ii) For y < 4s+1, s = 1, 2, . . . , there still is only a double pole with confluent branch point

singularity atx = 1
4.
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(iii) For y = 4s+1, x = 1
4, there is an(s + 2)-fold pole with confluent branch point singularity.

It is not very easy to compare the present results with the exact perimeter and area one [10],
since in this paper no phase diagram has been extracted from the (very complicated) final result.
The structure of this result is, however, similar to the one of equation (4.8); this is also the case
for the other exactly solved cases [16,17]. In particular, the numerical phase diagram in [16]
for the row-convex polygons looks qualitatively similar to figure 3. Therefore, it seems that
the two-variable generating function presented in this paper captures the essential features of
the perimeter and area one without it being as complicated to evaluate, at least for CSAPs. An
extension to SAPs with concavity 1 (see section 1) may be possible and will be attempted.
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